

CURIOUS | ENGAGED | CREATIVE

2024 Transfer & Second Degree Programs

MAJORS COLLEGE OF ARTS & SCIENCES

- Bergeline
- Bi ..., .
- M, , LÌ. .
- Cili , Cili, J
- E
- E 1 K I K L K L K K K
- •
- Excent and according
- 61 ,
- G , , , , ,
- H. . . ,
- $\bullet 1,\ldots, \tau,\tau,\tau,\tau, \tau, \tau, \ldots, \tau$

- M , , , C I I ..., ..
- 1.1.
- •, •, H,
- .1.
-

DIVISION **OF APPLIED TECHNOLOGY**

- C
- M, J. L. . .
- E ♦ 11
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
 ♦ 1
- 1. , . , 1. D 1

DIVISION OF EDUCATION & LEADERSHIP

◊ Ê. I. . . . Ê, K.) ∧ M, , < , < ,
 ∧ M, , < , < , E, , , , , ,), E, , , 🕅Ε, Ι **,** 1) E, . , ' 🖾 . . . , E, . , .

SCHOOL OF BUSINESS

- B + C A, I + + A, I ¢А, , , ◊A 1, 1 ..., 1 ◊ D₁, ¹, M₁, ..., ¹ ◊Ε `1 v`, F, ... ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■ ◊ , ... M, , • E 🔍
 - ◊M, , C | | , , ...

SHENANDOAH CONSERVATORY

- A BFA) • C , , , , A , A BA) • C 1 , BM) BA) К 🚬, ◊C . 1 . . . M . G . . . • D, BFA, BBA) • J _ CII..., M .. ΒM) • M , BA) • M , E, . , . BM) • M 1, ... BM) • M 10, 10, 10 BM) BFA) A 1'., ' BM) • M , ..., BM) • ..., .. D'in ..., ..., BFA) OC ILD. ◊ L . . . D . . . A 1 ,
 A 1 , ... ◊ , , , M, , , , 1 , . .

ELEANOR WADE CUSTER SCHOOL OF NURSING

• . . . <., ., B ◇A , D..... B

- G , B, . . , . • Anning Laster as
- B
- B . . . A, I
- C . L . . .
- C 🚬 🗤
- •C`___), /__, __Q___/_/_, A,, __A(..., __)_) / ___ ⊠, G__, B, ___, ,,)_C[Q] / 28 ,

PRF-PROFFSSIONAL GRADUATE HEALTH PROGRAMS

- $\bullet, \dots, \bullet, \bullet, \bullet, \bullet, \bullet, \dots, \bullet, \dots, \bullet, \overset{\bullet}{\mathsf{H}}_{\mathsf{h}} \to \mathsf{H}_{\mathsf{h}} \to \mathsf{H$
- •
- •, ..., ..., A ...,
- . . , N

and the property of the second second

HONORS PROGRAM

, where the second s

ACCELERATED OPTIONS **TO GRADUATE DEGREES**

We o er accelerated options to finish bachelor's degrees and/or accelerate to a graduate program here at SU!

BUSINESS

THEOLOGY

`

PFRFORMING ARTS

 $\mathsf{M}_{\mathrm{class}}(\mathbf{x}_{\mathrm{class}}) = \mathsf{L}_{\mathrm{class}}(\mathbf{x}_{\mathrm{class}}) = \mathsf{L}_{\mathrm{class}}(\mathbf{x}_{\mathrm{class}})$ · . · . .

and the second s Contraction of the second

Am I a Transfer Student?

How Do I Apply to Shenandoah?

You must have a minimum 2.0 cumulative GPA from all institutions you have attended, and be in good standing and eligible to return to your former institution. Some programs at Shenandoah (including nursing and the sciences) require a higher GPA and have

Many Shenandoah Conservatory programs do not allow spring semester entrance. Please check with the O ice of Admissions to see which programs allow spring semester entrance. $\mathbf{B} = \left\{ \begin{array}{ccc} \mathbf{M} & \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} & \mathbf{M} \\ \mathbf{M}$

Will My Credits Transfer to Shenandoah?

Y, ..., SUTran@su.edu or 540-665-4581.

ONCE YOU ARE ADMITTED, CONTRACT, CONTRAC
$(x_1, \dots, x_{n-1}) = (x_1, \dots, x_{n-1})$
$(x_1 + x_2, x_3, y_1, y_1, y_2, y_3, y_1, y_2, y_1, y_1, y_2, y_1, y_2, y_1, y_2, y_1, y_2, y_1, y_2, y_1, y_2, y_1, y_1, y_2, y_1, y_2, y_1, y_1, y_2, y_1, y_1, y_1, y_2, y_1, y_1, y_1, y_1, y_1, y_1, y_1, y_1$
יית A א B - CLE
$(x_1, \dots, x_{n-1}) = (x_1, \dots, x_{n-1}) = (x_1$
$\begin{array}{c} C_{x_1,y_1} \left[$

FINANCIAL AID

Applying for Financial Aid

YOU MUST APPLY FOR FINANCIAL AID IN ORDER TO RECEIVE IT. su.edu/finaid

Complete the Free Application for Federal Student Aid (FAFSA)

For Fall Semester 2024: FAF A

FAFSA CODE FOR SHENANDOAH: 003737

Estimated Cost of Attendance

2023-24 ESTIMATED COSTS (for Fall & Spring semesters together)

	· · 🕅 · ,
Η , , Μ, Γ', ,)	, <u> </u>
,	/
, R.	× Ø,/
Β , , , , , , , , , , , , , , , , , , ,	<u> </u>
Total	\$49,294

*Additional fees such as labs, music lessons or clinical placements are added to the cost of attendance, when appropriate, depending on the student's major. J-term and summer terms are not included here.

 $\begin{array}{l} \left\{ \left\{ x_{i}, x_{i}, x_{i} \right\}, \left\{ x_{i}, x_{i} \right\}, \left\{ x_{i}, x_{i} \right\}, \left\{ x_{i}, x_{i} \right\}, \left\{ x_{i}, x_{i}, x_{i} \right\}, \left\{ x_{i}, x_{i} \right\}, \left\{$

— Tessa McClinton '23 B.S. Psychology | Criminology minor anticipated M.S. in Applied Behavior Analysis '24

NCAA Hornet Athletics

MEN
В, ,
B
B, C,
F ,
G
L _e , c
. x
ь 🔨 с. 🦕 Бу.,
Ι,
$(f_{ij}) = (X_{ij})$

